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Abstract: In this paper we use the g-generated fuzzy implications to research the concept of automatization in the
process of derivation of new fuzzy functional and fuzzy multivalued dependencies from some given set of fuzzy
functional and fuzzy multivalued dependencies. The formal definitions of fuzzy functional and fuzzy multival-
ued dependencies that we apply are based on application of similarity relations and conformance values. In this
context, the paper follows similarity based fuzzy relational database approach. In order derive and then apply our
results, we identify fuzzy dependencies with fuzzy formulas. The obtained results are verified through the resolu-
tion principle.
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1 Preliminaries and introduction
Recall that a mapping C : [0, 1]2 → [0, 1] is called
a conjunction of the unit interval if: C (0, 0) = 0,
C (0, 1) = 0, C (1, 0) = 0, C (1, 1) = 1, and C (x, z)
≤ C (y, z), C (z, x) ≤ C (z, y) for x, y, z ∈ [0, 1] and
x ≤ y.

A mapping T : [0, 1]2 → [0, 1] (see, e.g., [10,
p. 16]) is called a triangular norm or a t-norm if:
T (x, 1) = x, T (x, y) ≤ T (x, z) for y ≤ z, T (x, y)
= T (y, x), and T (x, T (y, z)) = T (T (x, y) , z),
where x, y, z ∈ [0, 1].

It is known that a t-norm is a conjunction on the
unit interval, i.e., it is known that t-norms are widely
used to model conjunction operators.

Some additional requirements of t-norms are the
following ones: T is continuous, the partial mappings
of T are left-continuous, T (x, x) = x for x ∈ [0, 1],
T (x, x) < x for x ∈ (0, 1), Archimedean property, T
is continuous and T (x, y) < T (x, z) for x, y, z ∈
(0, 1) with 0 < y < z < 1, T is continuous and for x
∈ (0, 1), there is some y ∈ (0, 1) such that T (x, y) =
0.

The minimum t-norm TM (x, y) = min (x, y) is
very commonly used in literature. We shall apply this
t-norm in the sequel.

A mapping S : [0, 1]2 → [0, 1] is called a tri-
angular co-norm or a t-co-norm if: S (x, 0) = x,
S (x, y) ≤ S (x, z) for y ≤ z, S (x, y) = S (y, x),

and S (x,S (y, z)) = S (S (x, y) , z), where x, y, z
∈ [0, 1].

Some additional properties of t-co-norms are the
following ones: S is continuous, S (x, x) = x for x ∈
[0, 1], S (x, x) > x for x ∈ (0, 1), Archimedean prop-
erty, S is continuous and S (x, y) < S (x, z) for x, y,
z ∈ (0, 1) with 0< y < z < 1, S is continuous and for
x ∈ (0, 1), there is some y ∈ (0, 1) such that S (x, y)
= 1.

The maximum t-co-norm SM (x, y) =max (x, y)
is very commonly used in literature. We shall apply
this t-co-norm through the rest of the paper.

There are various definitions of fuzzy implica-
tions.

A function I : [0, 1]2 → [0, 1] (see, e.g., [2, p. 2,
Def. 1.1.1.]) is called a fuzzy implication if: I (0, 0)
= 1, I (1, 1) = 1, I (1, 0) = 0, I (x1, y) ≥ I (x2, y)
for x1 ≤ x2, and I (x, y1) ≤ I (x, y2) for y1 ≤ y2,
where x, x1, x2, y, y1, y2 ∈ [0, 1].

Note that this definition of fuzzy implication is
equivalent to the one proposed in [9] (see also, [6]).

Also, note that each fuzzy implication satisfies the
following properties: I (0, y) = 1 for y ∈ [0, 1], and
I (x, 1) = 1 for x ∈ [0, 1]. These properties are known
as left and right boundary conditions, respectively.

In [13], Yager defined two new classes of
fuzzy implications, called the f-generated and the g-
generated implications. In this paper we pay attention
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to the g-generated implications.
The g-generated implications are obtained from

strictly increasing functions.
Let g : [0, 1]→ [0,∞] be a strictly increasing and

continuous function such that g (0) = 0. The function
Ig : [0, 1]2→ [0, 1] (see, e.g., [2, p. 116]) defined by

Ig (x, y) = g(−1)
(
1

x
g (y)

)
,

x, y ∈ [0, 1], with the understanding 1
0 =∞ and∞ ·

0 =∞, is called a g-generated implication.
Here, the function g(−1) is the pseudo-inverse of

g given by

g(−1) (x) =

{
g−1 (x) , x ∈ [0, g (1)],
1, x ∈ [g (1) ,∞].

The function g itself is called a g-generator (of Ig).
If g is a g-generator, then Ig is a fuzzy implica-

tion. Namely, it is not hard to verify that in this case
Ig satisfies all conditions given by the fuzzy implica-
tion definition.

Note that the definition of Ig may be written in
the following form (without use of g(−1)), i.e., as

Ig (x, y) = g−1
(
min

(
1

x
g (y) , g (1)

))
,

where x, y ∈ [0, 1].
Also note that for the g-generator g (x) = − 1

log x ,
one obtains well known Yager fuzzy implication
IY G (x, y) = yx, x, y ∈ [0, 1] with the understanding
00 = 1. Yager implication IY G is also an f-implication
with the f-generator f (x) = − log x (see, e.g., [2,
p. 110]).

The g-generators of the g-generated implications
are unique up to a positive multiplicative constant.
More precisely, if g1, g2 : [0, 1]→ [0,∞] are any two
g-generators, then, Ig1 = Ig2 if and only if there is a
constant c ∈ (0,∞) such that g2 (x) = cg1 (x) for x
∈ [0, 1].

If g is a g-generator, then either g (1) = ∞ or
g (1) < ∞. If g (1) < ∞, then g1 : [0, 1] → [0,∞]

defined by g1 (x) =
g(x)
g(1) , x ∈ [0, 1] is a g-generator.

Namely, g is a strictly increasing and continuous func-
tion such that g (0) = 0. Therefore, g (1) 6= 0. Con-
sequently, g1 is a strictly increasing and continuous
function such that g1 (0) = 0, i.e., g1 is a g-generator.
Note that g1 (1) = 1. Now, g (x) = g (1) g1 (x), x ∈
[0, 1] and g (1) ∈ (0,∞) yield that Ig = Ig1 . This

actually means that it is enough to consider those g-
generators for which g (1) =∞ or g (1) = 1.

The fuzzy implication applied in this paper will
be a g-generated implication Ig.

The main purpose of this paper is to prove the
following theorems.

Theorem 1. Suppose that R (U) =
R (A1, A2, ..., An) is a scheme on domainsD1,D2,...,
Dn, where U is the set of all attributes A1, A2,..., An
on D1, D2,..., Dn, respectively (U is the universal set
of attributes), andDi is a finite set for i∈ {1, 2, ..., n}.
Let C be a set whose elements are fuzzy functional de-
pendencies on U of the formK

θ2−→F L and fuzzy mul-
tivalued dependencies on U of the form K → θ2−→F L,
whereK and L are subsets of U , and θ2 is the linguis-
tic strength of the dependency. Suppose that c is some
fuzzy functional or fuzzy multivalued dependency on
U . Let {t1, t2} = r ⊆ 2D1 × 2D2 × ... × 2Dn be
any two-element fuzzy relation instance on R (U) and
β ∈ [0, 1] be any number. Denote by ir,β a valuation
joined to r and β, where ir,β : {A1, A2, ..., An} →
[0, 1] is defined via conformance ϕ (Ak [t1, t2]) of the
attributeAk ∈ {A1, A2, ..., An} on tuples t1 and t2 by
ir,β (Ak) >

1
2 if ϕ (Ak [t1, t2]) ≥ β and ir,β (Ak) ≤ 1

2
if ϕ (Ak [t1, t2]) < β. Let

ir,β (Ai ∧Aj) = TM (ir,β (Ai) , ir,β (Aj)) ,

ir,β (Ai ∨Aj) = SM (ir,β (Ai) , ir,β (Aj)) ,

ir,β (Ai ⇒ Aj) = Ig (ir,β (Ai) , ir,β (Aj)) ,

for Ai, Aj ∈ {A1, A2, ..., An}. Furthermore, let

(∧A∈KA)⇒ (∧B∈LB)

be the fuzzy formula (with respect to ir,β) joined to K
θ2−→F L, and

(∧A∈KA)⇒ ((∧B∈LB) ∨ (∧C∈MC)) ,

the fuzzy formula (with respect to ir,β) joined to K

→ θ2−→F L, where M = U \ (K ∪ L). Denote by C
′

resp. c
′

the set of fuzzy formulas resp. the fuzzy for-
mula joined to C resp. c. Then, the following two
conditions are equivalent:

(a) Any two-element, fuzzy relation instance on
R (U) which satisfies all dependencies in C, sat-
isfies the dependency c.
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(b) ir,β
(
c
′
)
> 1

2 for every ir,β such that ir,β (K) > 1
2

for all K ∈ C ′
.

Theorem 2. Let r = {t1, t2} be any two-element,

fuzzy relation instance on R (U), and X → θ−→F Y
be any fuzzy multivalued dependency on U . Let Z
= U \ (X ∪ Y ). Then, r satisfies X → θ−→F Y ,
and for all A ∈ X , ϕ (A [t1, t2]) ≥ θ holds true
if and only if ϕ (X [t1, t2]) ≥ θ and ir,θ (H) > 1

2 ,
where H denotes the fuzzy formula (∧A∈XA) ⇒
((∧B∈YB) ∨ (∧C∈ZC)) joined to X → θ−→F Y , and
ϕ (X [t1, t2]) denotes the conformance of the attribute
set X on tuples t1 and t2.

Here, we point out that the conformances
ϕ (A [t1, t2]) (ϕ (Ak [t1, t2])), ϕ (X [t1, t2]), etc. are
taken in the sense of Definitions 3.1. and 3.2. in [11,
pp. 165-166]. These definitions, however, are based
on the concept of similarity relations (see, [11, p. 163,
Def. 2.1.]). Furthermore, the formal definitions of
fuzzy functional and fuzzy multivalued dependencies
(which are given on the basis of conformance values)
are taken in the sense of Definitions 3.3. and 4.1. in
[11, pp. 167-172].

Obviously, ϕ (A [t1, t2])≥ θ for allA ∈X and all
t1, t2 ∈ r if and only if ϕ (X [t1, t2]) ≥ θ for all t1, t2
∈ r, where r is a fuzzy relation instance on R (U) and
X ⊆ U . Moreover, if r = {t1, t2}, then r satisfies X

→ θ−→F Y , and for all A ∈ X , ϕ (A [t1, t2]) ≥ θ holds
true if and only if ϕ (X [t1, t2]) ≥ θ, ϕ (Y [t1, t2]) ≥
θ or ϕ (X [t1, t2]) ≥ θ, ϕ (Z [t1, t2]) ≥ θ, where X

→ θ−→F Y is a fuzzy multivalued dependency on U and
Z = U \ (X ∪ Y ).

Note that a variant of Theorem 1 as well as a vari-
ant of Theorem 2 are proved in [7] for arbitrary f-
generated implication (see also, [5], [4]). Since the
present paper deals with the class of g-generated im-
plications, it represents a natural complement of the
aforementioned papers.

2 Proofs of results

Proof. (of Theorem 2.)

(⇒) Assume that r satisfies X → θ−→F Y , and that for
all A ∈ X , ϕ (A [t1, t2]) ≥ θ holds true.

Now,

ϕ (X [t1, t2]) ≥ θ, ϕ (Y [t1, t2]) ≥ θ or

ϕ (X [t1, t2]) ≥ θ, ϕ (Z [t1, t2]) ≥ θ.

Assume that ϕ (X [t1, t2]) ≥ θ and ϕ (Y [t1, t2])
≥ θ hold true. ϕ (Y [t1, t2]) ≥ θ yields that
ϕ (B [t1, t2]) ≥ θ for all B ∈ Y . Therefore, ir,θ (B)

> 1
2 for all B ∈ Y . We conclude, ir,θ (∧B∈YB) > 1

2 .
Similarly, ir,θ (∧A∈XA) > 1

2 .
We have,

ir,θ (H)
= ir,θ ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧C∈ZC)))

= g−1
(
min

( 1

ir,θ (∧A∈XA)
·

g (ir,θ ((∧B∈YB) ∨ (∧C∈ZC))) , g (1)
))

= g−1
(
min

( 1

ir,θ (∧A∈XA)
·

g (max (ir,θ (∧B∈YB) , ir,θ (∧C∈ZC))) , g (1)
))
.

Let

a = ir,θ (∧A∈XA) ,
b = max (ir,θ (∧B∈YB) , ir,θ (∧C∈ZC)) .

Now,

ir,θ (H) = g−1
(
min

(
1

a
g (b) , g (1)

))
.

ir,θ (∧A∈XA) > 1
2 yields that a > 1

2 . Further-
more, ir,θ (∧B∈YB) > 1

2 yields that b > 1
2 .

Now, ir,θ (H) > 1
2 if and only if

min

(
1

a
g (b) , g (1)

)
> g

(
1

2

)
.

If min
(
1
ag (b) , g (1)

)
= g (1), then

min
(
1
ag (b) , g (1)

)
> g

(
1
2

)
since g (1) > g

(
1
2

)
, i.e.,

ir,θ (H) > 1
2 holds true in this case.

Suppose that min
(
1
ag (b) , g (1)

)
= 1

ag (b). We
have, 1

ag (b) > g
(
1
2

)
if and only if ag

(
1
2

)
< g (b).

Now, a ≤ 1 and 1
2 < b yield that

ag

(
1

2

)
≤ g

(
1

2

)
< g (b) .

Therefore, ir,θ (H) > 1
2 .

If we assume that ϕ (X [t1, t2]) ≥ θ and
ϕ (Z [t1, t2]) ≥ θ hold true, then, reasoning as in the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Dzenan Gusic

ISSN: 2224-2856 73 Volume 14, 2019



previous case, we obtain that ir,θ (∧A∈XA) > 1
2 and

ir,θ (∧C∈ZC) > 1
2 . Consequently, a > 1

2 and b > 1
2 .

Now, reasoning in the same way as in the previous
case, we conclude that ir,θ (H) > 1

2 .

(⇐) Assume that ϕ (X [t1, t2]) ≥ θ and ir,θ (H) > 1
2

hold true.
Now,

ir,θ (H) = g−1
(
min

(
1

a
g (b) , g (1)

))
>

1

2
,

where

a = ir,θ (∧A∈XA) ,
b = max (ir,θ (∧B∈YB) , ir,θ (∧C∈ZC)) .

ϕ (X [t1, t2]) ≥ θ yields that a > 1
2 . Our aim is

to prove that b > 1
2 holds also true. Namely, if b > 1

2 ,
then ir,θ (∧B∈YB) > 1

2 or ir,θ (∧C∈ZC) > 1
2 . In the

first case, for example, one obtains that ir,θ (B) > 1
2

for all B ∈ Y . This means that ϕ (B [t1, t2]) ≥ θ for
all B ∈ Y . Consequently, ϕ (Y [t1, t2]) ≥ θ.

Similarly, ir,θ (∧C∈ZC) > 1
2 yields that

ϕ (Z [t1, t2]) ≥ θ.
Since, ir,θ (H) > 1

2 , we have that

min

(
1

a
g (b) , g (1)

)
> g

(
1

2

)
.

If min
(
1
ag (b) , g (1)

)
= 1

ag (b), then 1
ag (b) >

g
(
1
2

)
.

If min
(
1
ag (b) , g (1)

)
= g (1), then

1

a
g (b) ≥ g (1) > g

(
1

2

)
.

Hence, 1
ag (b) > g

(
1
2

)
in any case. Now,

a <
g (b)

g
(
1
2

) .
Since a > 1

2 , the last inequality implies that

g (b)

g
(
1
2

) > 1,

i.e., that g (b) > g
(
1
2

)
, i.e., that b > 1

2 .

Therefore, b > 1
2 , and then ϕ (Y [t1, t2]) ≥ θ or

ϕ (Z [t1, t2]) ≥ θ. In other words,

ϕ (X [t1, t2]) ≥ θ, ϕ (Y [t1, t2]) ≥ θ or

ϕ (X [t1, t2]) ≥ θ, ϕ (Z [t1, t2]) ≥ θ.

As noted before, this means that r satisfies X
→ θ−→F Y , and that for all A ∈ X , ϕ (A [t1, t2]) ≥ θ
holds true. This completes the proof.

Proof. (of Theorem 1.)
We write X θ1−→F Y resp. X → θ1−→F Y instead

of c if c is a fuzzy functional resp. fuzzy multivalued
dependency. Therefore, we write

(∧A∈XA)⇒ (∧B∈YB)

resp.

(∧A∈XA)⇒ ((∧B∈YB) ∨ (∧D∈ZD))

instead of c
′
, where Z = U \ (X ∪ Y ).

We let the set {a, b} to be the domain of each of
the attributes in U .

Choose some θ
′′ ∈

[
0, θ

′
)

, where θ
′

is the min-
imum of the strengths of all dependencies that ap-
pear in C ∪ {c}. If θ

′
= 1, then one obtains a non-

interesting case where each c1 ∈C ∪ {c} is of strength
1. Hence, we assume that θ

′
< 1.

Put s (a, b) = s (b, a) = θ
′′

to be a similarity rela-
tion on domains of the attributes in U .

(a)⇒ (b) Suppose that (b) is not valid.
Now, there is some ir,β such that ir,β (K) > 1

2 for

all K ∈ C ′
and ir,β

(
c
′
)
≤ 1

2 .
Here, ir,β is associated to some two-element,

fuzzy relation instance r on R (U), and some β ∈
[0, 1]. We may take r = {t1, t2}.

We introduce Z
′
=
{
A ∈ U | ir,β (A) > 1

2

}
.

Let Z
′
= ∅.

This means that ir,β (A) ≤ 1
2 for all A ∈ U .

ir,β

(
c
′
)
≤ 1

2 yields that

ir,β ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2

resp.
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ir,β ((∧A∈XA)⇒ ((∧B∈YB) ∨ (∧D∈ZD))) ≤ 1

2
.

Hence,

g−1
(
min

( 1

ir,β (∧A∈XA)
·

g (ir,β (∧B∈YB)) , g (1)
))
≤ 1

2

resp.

g−1
(
min

( 1

ir,β (∧A∈XA)
·

g (ir,β ((∧B∈YB) ∨ (∧D∈ZD))) , g (1)
))
≤ 1

2
,

i.e.,

g−1
(
min

( 1

ir,β (∧A∈XA)
·

g (ir,β (∧B∈YB)) , g (1)
))
≤ 1

2

resp.

g−1
(
min

( 1

ir,β (∧A∈XA)
·

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) , g (1)
))

≤ 1

2
,

i.e.,

min
( 1

ir,β (∧A∈XA)
·

g (ir,β (∧B∈YB)) , g (1)
)
≤ g

(
1

2

)
resp.

min
( 1

ir,β (∧A∈XA)
·

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) , g (1)
)

≤ g
(
1

2

)
.

The fact that g is a strictly increasing function im-
plies that the condition g (1) ≤ g

(
1
2

)
is not satisfied.

This means that g (1) is not the minimum in any of the
aforementioned cases. Therefore,

1

ir,β (∧A∈XA)
· g (ir,β (∧B∈YB)) ≤ g

(
1

2

)
resp.

1

ir,β (∧A∈XA)
·

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

≤ g
(
1

2

)
.

If ir,β (∧A∈XA) = 0, then 1
ir,β(∧A∈XA)

=∞. Since g (ir,β (∧B∈YB)) ≥ 0 resp.
g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) ≥ 0, and ∞
· 0 =∞, we obtain that

1

ir,β (∧A∈XA)
· g (ir,β (∧B∈YB)) =∞

resp.

1

ir,β (∧A∈XA)
·

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

=∞.

Therefore, g
(
1
2

)
≥∞. This, however, contradicts

the fact that g is a strictly increasing function. In other
words, ir,β (∧A∈XA) > 0.

If g (ir,β (∧B∈YB)) =∞ resp.
g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) = ∞, then
ir,β (∧B∈YB) = 1 resp.
max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)) = 1, i.e.,
ir,β (∧B∈YB) = 1 resp. ir,β (∧B∈YB) = 1 or
ir,β (∧D∈ZD) = 1. This means that in any case there
exists A ∈ U such that ir,β (A) = 1 > 1

2 . This is a
contradiction. Hence, g (ir,β (∧B∈YB)) < ∞ resp.
g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) <∞.

We have,

ir,β (∧A∈XA) ≥
g (ir,β (∧B∈YB))

g
(
1
2

)
resp.

ir,β (∧A∈XA)

≥
g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

g
(
1
2

) .
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Now, ir,β (A) ≤ 1
2 , A ∈ U ,

yields that ir,β (∧B∈YB) ≤ 1
2 resp.

max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)) ≤ 1
2 . Hence,

g (ir,β (∧B∈YB)) ≤ g
(
1

2

)
resp.

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) ≤ g
(
1

2

)
,

i.e.,

g (ir,β (∧B∈YB))

g
(
1
2

) ≤ 1

resp.

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

g
(
1
2

) ≤ 1.

These inequalities imply that the condition
ir,β (∧A∈XA) = 1 must be satisfied. Consequently,
ir,β (A) = 1 for some A ∈ X ⊆ U . This is a contra-
diction.

We conclude, Z
′ 6= ∅.

Now, assume that Z
′
= U .

Then ir,β (A) > 1
2 for A ∈ U .

As earlier, ir,β
(
c
′
)
≤ 1

2 yields that

1

ir,β (∧A∈XA)
· g (ir,β (∧B∈YB)) ≤ g

(
1

2

)
resp.

1

ir,β (∧A∈XA)
·

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

≤ g
(
1

2

)
.

If ir,β (∧A∈XA) = 0, then there exists A ∈ X
⊆ U such that ir,β (A) = 0. This is a contradiction.
Hence, ir,β (∧A∈XA) > 0. We obtain,

ir,β (∧A∈XA) ≥
g (ir,β (∧B∈YB))

g
(
1
2

)

resp.

ir,β (∧A∈XA)

≥
g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

g
(
1
2

) .

Now, ir,β (A) > 1
2 , A ∈ U

implies that ir,β (∧B∈YB) > 1
2 resp.

max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)) > 1
2 .

Consequently, g (ir,β (∧B∈YB)) > g
(
1
2

)
resp.

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) > g
(
1
2

)
,

i.e.,

g (ir,β (∧B∈YB))

g
(
1
2

) > 1

resp.

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

g
(
1
2

) > 1.

Therefore, ir,β (∧A∈XA) > 1. This is a contra-
diction.

Consequently, Z
′ 6= U .

Choose r
′
=
{
t
′
, t

′′
}

to be the two-element,
fuzzy relation instance given by Table 1.

Table 1:
attributes of Z

′
other attributes

t
′

a, a, ... , a a, a, ... , a
t
′′

a, a, ... , a b, b, ... , b

Our goal is to prove that this fuzzy relation in-
stance satisfies all elements in C, and violates c.

Let K θ2−→F L be a fuzzy functional dependency
from set C. Now,

g−1
(
min

( 1

ir,β (∧A∈KA)
·

g (ir,β (∧B∈LB)) , g (1)
))

>
1

2
,

i.e.,

min
( 1

ir,β (∧A∈KA)
·

g (ir,β (∧B∈LB)) , g (1)
)
> g

(
1

2

)
.
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If min
(

1
ir,β(∧A∈KA)

g (ir,β (∧B∈LB)) , g (1)
)

=

g (1), then

1

ir,β (∧A∈KA)
g (ir,β (∧B∈LB)) ≥ g (1) > g

(
1

2

)
.

Otherwise, we immediately obtain that

1

ir,β (∧A∈KA)
g (ir,β (∧B∈LB)) > g

(
1

2

)
.

In other words, the last inequality holds always
true.

Suppose that ir,β (∧A∈KA) ≤ 1
2 . Now, there is

some A ∈ K such that ir,β (A) ≤ 1
2 . Consequently,

A /∈ Z ′
. Therefore, ϕ

(
A
[
t
′
, t

′′
])

= θ
′′
, and hence

ϕ
(
K
[
t
′
, t

′′
])

= θ
′′
.

The fact that s (a, b) = s (b, a) = θ
′′

hold true
gives us that ϕ

(
Q
[
t
′
, t

′′
])
≥ θ

′′
for every Q ⊆ U .

Therefore, ϕ
(
L
[
t
′
, t

′′
])
≥ θ′′ , i.e.,

ϕ
(
L
[
t
′
, t

′′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

.

This means that r
′

satisfies the dependency K
θ2−→F L.

Suppose that ir,β (∧A∈KA) > 1
2 . Now,

ir,β (∧A∈KA) <
g (ir,β (∧B∈LB))

g
(
1
2

) .

Consequently,

g (ir,β (∧B∈LB))

g
(
1
2

) > 1,

i.e.,

g (ir,β (∧B∈LB)) > g

(
1

2

)
,

i.e.,

ir,β (∧B∈LB) >
1

2
.

Now, ir,β (B) > 1
2 for every B ∈ L. Then, B ∈

Z
′

for B ∈ L, i.e., L ⊆ Z ′
. We obtain, ϕ

(
L
[
t
′
, t

′′
])

= 1, i.e.,

ϕ
(
L
[
t
′
, t

′′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

.

Thus, r
′

satisfies K θ2−→F L.
Let K → θ2−→F L be a fuzzy multivalued depen-

dency from the set C. Now,

g−1
(
min

( 1

ir,β (∧A∈KA)
·

g (max (ir,β (∧B∈LB) , ir,β (∧D∈MD))) ,

g (1)
))

>
1

2
,

i.e.,

min
( 1

ir,β (∧A∈KA)
·

g (max (ir,β (∧B∈LB) , ir,β (∧D∈MD))) , g (1)
)

> g

(
1

2

)
,

where M = U \ (K ∪ L).
If

min
( 1

ir,β (∧A∈KA)
·

g (max (ir,β (∧B∈LB) , ir,β (∧D∈MD))) , g (1)
)

= g (1) ,

then
1

ir,β (∧A∈KA)
·

g (max (ir,β (∧B∈LB) , ir,β (∧D∈MD)))

≥ g (1) > g

(
1

2

)
.

Otherwise,

1

ir,β (∧A∈KA)
·

g (max (ir,β (∧B∈LB) , ir,β (∧D∈MD)))

> g

(
1

2

)
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holds immediately true. In any case, the last inequality
is valid.

Assume that ir,β (∧A∈KA) ≤ 1
2 . Reasoning as

before, we obtain that ϕ
(
K
[
t
′
, t

′′
])

= θ
′′
.

Now, there exists t
′′′ ∈ r′ , t′′′ = t

′
such that

ϕ
(
K
[
t
′′′
, t

′
])

= 1 ≥ min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
L
[
t
′′′
, t

′
])

= 1 ≥ min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
M
[
t
′′′
, t

′′
])
≥ θ′′ = min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

.

Therefore, r
′

satisfies the dependency K → θ2−→F L.
Now, assume that ir,β (∧A∈KA) > 1

2 . It follows

that ϕ
(
K
[
t
′
, t

′′
])

= 1.

We have,

ir,β (∧A∈KA)

<
g (max (ir,β (∧B∈LB) , ir,β (∧D∈MD)))

g
(
1
2

) .

Since ir,β (∧A∈KA) > 1
2 , we conclude that

g (max (ir,β (∧B∈LB) , ir,β (∧D∈MD)))

g
(
1
2

) > 1,

i.e.,

g (max (ir,β (∧B∈LB) , ir,β (∧D∈MD)))

> g

(
1

2

)
,

i.e.,

max (ir,β (∧B∈LB) , ir,β (∧D∈MD)) >
1

2
.

Hence, ir,β (∧B∈LB) > 1
2 or ir,β (∧D∈MD) > 1

2 . In

the first case, ϕ
(
L
[
t
′
, t

′′
])

= 1. In the second case,

ϕ
(
M
[
t
′
, t

′′
])

= 1.

Assume that ϕ
(
L
[
t
′
, t

′′
])

= 1.

In this case, there is t
′′′ ∈ r′ , t′′′ = t

′′
such that

ϕ
(
K
[
t
′′′
, t

′
])

= 1

≥ min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
L
[
t
′′′
, t

′
])

= 1

≥ min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

,

ϕ
(
M
[
t
′′′
, t

′′
])

= 1

≥ min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

.

(1)

Hence, r
′

satisfies the dependency K → θ2−→F L.
Now, assume that ϕ

(
M
[
t
′
, t

′′
])

= 1.

In this case, there exists t
′′′ ∈ r′ , t′′′ = t

′
such that

(1) holds true. Consequently, the instance r
′

satisfies
the dependency K → θ2−→F L.

It remains to prove that the instance r
′

does not
satisfy X θ1−→F Y resp. X → θ1−→F Y .

First, let

g−1
(
min

( 1

ir,β (∧A∈XA)
·

g (ir,β (∧B∈YB)) , g (1)
))
≤ 1

2
.

We have,

min

(
1

ir,β (∧A∈XA)
g (ir,β (∧B∈YB)) , g (1)

)
≤ g

(
1

2

)
.

Since g (1) > g
(
1
2

)
, we obtain that

1

ir,β (∧A∈XA)
g (ir,β (∧B∈YB)) ≤ g

(
1

2

)
.

Assume that g (ir,β (∧B∈YB)) 6= 0,∞.
If ir,β (∧A∈XA) = 0, then, as earlier, we obtain

that g
(
1
2

)
≥ ∞. This contradicts the fact that g is a

strictly increasing function. Therefore, ir,β (∧A∈XA)
> 0. Hence,

g (ir,β (∧B∈YB))

g
(
1
2

) ≤ ir,β (∧A∈XA) .
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If ir,β (∧A∈XA) ≤ 1
2 , then

g (ir,β (∧B∈YB))

g
(
1
2

) = 0,

i.e., g
(
1
2

)
=∞, i.e., a contradiction. Hence,

ir,β (∧A∈XA) > 1
2 . Then, ϕ

(
X
[
t
′
, t

′′
])

= 1.
Now,

g (ir,β (∧B∈YB))

g
(
1
2

) ≤ ir,β (∧A∈XA) .

implies that

g (ir,β (∧B∈YB))

g
(
1
2

) ≤ 1

2
< 1.

Hence,

g (ir,β (∧B∈YB)) < g

(
1

2

)
,

i.e.,

ir,β (∧B∈YB) <
1

2
.

We conclude, ϕ
(
Y
[
t
′
, t

′′
])

= θ
′′
.

Now,

ϕ
(
Y
[
t
′
, t

′′
])

= θ
′′
< θ

′ ≤ θ1 = min (θ1, 1)

= min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

i.e., r
′

does not satisfy the dependency X θ1−→F Y .
Second, let

g−1
(
min

( 1

ir,β (∧A∈XA)
·

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) ,

g (1)
))

≤ 1

2
.

We have,

min
( 1

ir,β (∧A∈XA)
·

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) , g (1)
)

≤ g
(
1

2

)
.

As earlier, g (1) > g
(
1
2

)
yields that

1

ir,β (∧A∈XA)
·

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

≤ g
(
1

2

)
.

Assume that
g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) 6= 0,∞.

If ir,β (∧A∈XA) = 0, then g
(
1
2

)
≥ ∞. This is a

contradiction, Hence, ir,β (∧A∈XA) > 0. Therefore,

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

g
(
1
2

)
≤ ir,β (∧A∈XA) .

If ir,β (∧A∈XA) ≤ 1
2 , then

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

g
(
1
2

) = 0,

i.e., g
(
1
2

)
=∞, i.e., a contradiction. Hence,

ir,β (∧A∈XA) > 1
2 . We obtain, ϕ

(
X
[
t
′
, t

′′
])

= 1.

Now, ir,β (∧A∈XA) > 1
2 and

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

g
(
1
2

)
≤ ir,β (∧A∈XA) .

yield that

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)))

g
(
1
2

)
≤ 1

2
< 1,
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i.e., that

g (max (ir,β (∧B∈YB) , ir,β (∧D∈ZD))) ≤ g
(
1

2

)
.

We obtain,

max (ir,β (∧B∈YB) , ir,β (∧D∈ZD)) ≤ 1

2
.

Hence, ir,β (∧B∈YB) < 1
2 and ir,β (∧D∈ZD) < 1

2 ,

i.e., ϕ
(
Y
[
t
′
, t

′′
])

= θ
′′

and ϕ
(
Z
[
t
′
, t

′′
])

= θ
′′
.

Now, if t
′′′ ∈ r′ and t

′′′
= t

′
, then

ϕ
(
X
[
t
′′′
, t

′
])

= 1 ≥ min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Y
[
t
′′′
, t

′
])

= 1 ≥ min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Z
[
t
′′′
, t

′′
])

= θ
′′
< θ

′ ≤ θ1

= min (θ1, 1)

= min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

.

Otherwise, if t
′′′ ∈ r′ and t

′′′
= t

′′
, then

ϕ
(
X
[
t
′′′
, t

′
])

= 1 ≥ min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Y
[
t
′′′
, t

′
])

= θ
′′
< θ

′ ≤ θ1

= min (θ1, 1)

= min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Z
[
t
′′′
, t

′′
])

= 1 ≥ min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

.

We conclude that the instance r
′

violates
X → θ1−→F Y .

(b)⇒ (a) Suppose that (a) is not valid.
Now, there is a two-element fuzzy relation in-

stance on R (U) which satisfies elements in C, and
does not satisfy c. Denote it by r

′
=
{
t
′
, t

′′
}

.

Put, Z
′
=
{
A ∈ U | ϕ

(
A
[
t
′
, t

′′
])

= 1
}

.

If we assume that Z
′
= ∅, then ϕ

(
A
[
t
′
, t

′′
])

=

θ
′′

for A ∈ U , and, consequently, ϕ
(
Q
[
t
′
, t

′′
])

= θ
′′

for Q ⊆ U .

Suppose that the instance r
′

does not satisfy the
dependency X θ1−→F Y . Now,

θ
′′
= ϕ

(
Y
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

= min
(
θ1, θ

′′
)
= θ

′′
.

This is a contradiction.
Suppose that the instance r

′
does not satisfy the

dependency X → θ1−→F Y . Now, the conditions

ϕ
(
X
[
t
′′′
, t

′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Y
[
t
′′′
, t

′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Z
[
t
′′′
, t

′′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

don’t simultaneously hold for any t
′′′ ∈ r′ . In particu-

lar, the conditions

ϕ
(
X
[
t
′
, t

′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Y
[
t
′
, t

′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

ϕ
(
Z
[
t
′
, t

′′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

don’t simultaneously hold. Since the first and the sec-
ond condition hold obviously true, we obtain that

θ
′′
= ϕ

(
Z
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

= min
(
θ1, θ

′′
)
= θ

′′
.

Hence, a contradiction.
Therefore, Z

′ 6= ∅.
If we assume that Z

′
= U , then ϕ

(
A
[
t
′
, t

′′
])

=

1 for A ∈ U , and then ϕ
(
Q
[
t
′
, t

′′
])

= 1 for Q ⊆ U .

Suppose that the instance r
′

does not satisfy the
dependency X θ1−→F Y . We obtain,

1 = ϕ
(
Y
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

= min (θ1, 1) = θ1,

i.e., a contradiction.
Suppose that the instance r

′
does not satisfy the

dependency X → θ1−→F Y . Now, the condition
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ϕ
(
Z
[
t
′
, t

′′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

does not hold, i.e., we have that

1 = ϕ
(
Z
[
t
′
, t

′′
])

< min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

= min (θ1, 1) = θ1.

This is a contradiction.
We conclude, Z

′ 6= U .
Now, r

′
is a two-element fuzzy relation

instance on R (U) and β = 1 ∈ [0, 1], so we are
able to introduce ir′ ,β = ir′ ,1 by putting ir′ ,1 (A)

> 1
2 if ϕ

(
A
[
t
′
, t

′′
])

= 1, and ir′ ,1 (A) ≤
1
2 if

ϕ
(
A
[
t
′
, t

′′
])

< 1.

Our aim is to prove that all fuzzy formulas in C
′

are valid under ir′ ,1. On the other side, we shall prove
that c

′
is not valid under ir′ ,1.

Suppose that K ∈ C ′
corresponds to some fuzzy

functional dependency K θ2−→F L from the set C.
Moreover, suppose that the inequality ir′ ,1 (K) >

1
2 is not true. We have,

g−1
(
min

( 1

ir′ ,1 (∧A∈KA)
·

g
(
ir′ ,1 (∧B∈LB)

)
, g (1)

))
≤ 1

2
,

i.e.,

min
( 1

ir′ ,1 (∧A∈KA)
·

g
(
ir′ ,1 (∧B∈LB)

)
, g (1)

)
≤ g

(
1

2

)
.

Since g (1) > g
(
1
2

)
, we obtain

1

ir′ ,1 (∧A∈KA)
g
(
ir′ ,1 (∧B∈LB)

)
≤ g

(
1

2

)
.

Suppose that g
(
ir′ ,1 (∧B∈LB)

)
6= 0,∞.

If ir′ ,1 (∧A∈KA) = 0, then g
(
1
2

)
≥ ∞. This

contradicts the fact g is a strictly increasing function.
Hence, ir′ ,1 (∧A∈KA) > 0, and then

g
(
ir′ ,1 (∧B∈LB)

)
g
(
1
2

) ≤ ir′ ,1 (∧A∈KA) .

If ir′ ,1 (∧A∈KA) ≤
1
2 , we obtain that

g
(
ir′ ,1 (∧B∈LB)

)
g
(
1
2

) = 0,

i.e., that g
(
1
2

)
=∞. This is a contradiction.

Hence, ir′ ,1 (∧A∈KA) >
1
2 , i.e., ϕ

(
K
[
t
′
, t

′′
])

= 1.
Furthermore, ir′ ,1 (∧A∈KA) >

1
2 and

g
(
ir′ ,1 (∧B∈LB)

)
g
(
1
2

) ≤ ir′ ,1 (∧A∈KA)

imply that

g
(
ir′ ,1 (∧B∈LB)

)
g
(
1
2

) ≤ 1

2
< 1.

Thus,

g
(
ir′ ,1 (∧B∈LB)

)
< g

(
1

2

)
,

i.e., ir′ ,1 (∧B∈LB) < 1
2 , i.e., ϕ

(
L
[
t
′
, t

′′
])

= θ
′′
.

Now, the fact that the instance r
′

satisfies the de-
pendency K θ2−→F L, yields that

θ
′′
= ϕ

(
L
[
t
′
, t

′′
])
≥ min

(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

= min (θ2, 1) = θ2.

This is a contradiction.
Therefore, ir′ ,1 (K) >

1
2 .

Now, suppose that K ∈ C ′
corresponds to some

fuzzy multivalued dependency K → θ2−→F L from the
set C. Put, M = U \ (K ∪ L).

Assume that ir′ ,1 (K) ≤
1
2 , i.e., that

g−1
(
min

( 1

ir′ ,1 (∧A∈KA)
·

g
(
max

(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
,

g (1)
))

≤ 1

2
.
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We have,

min
( 1

ir′ ,1 (∧A∈KA)
·

g
(
max

(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
,

g (1)
)

≤ g
(
1

2

)
.

As before, g (1) > g
(
1
2

)
implies that

1

ir′ ,1 (∧A∈KA)
·

g
(
max

(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
≤ g

(
1

2

)
.

Suppose that
g
(
max

(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
6= 0,∞.

If ir′ ,1 (∧A∈KA) = 0, then g
(
1
2

)
≥∞, i.e., a con-

tradiction. Hence, ir′ ,1 (∧A∈KA) > 0. We obtain,

g
(
max

(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
g
(
1
2

)
≤ ir′ ,1 (∧A∈KA) .

As earlier, ir′ ,1 (∧A∈KA) ≤
1
2 yields g

(
1
2

)
=∞.

This is not possible, however. Therefore,
ir′ ,1 (∧A∈KA) >

1
2 .

We obtain, ϕ
(
K
[
t
′
, t

′′
])

= 1, and

g
(
max

(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
g
(
1
2

)
≤ 1

2
< 1,

i.e.,

g
(
max

(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

))
< g

(
1

2

)
,

i.e.,

max
(
ir′ ,1 (∧B∈LB) , ir′ ,1 (∧D∈MD)

)
<

1

2
.

Hence, ir′ ,1 (∧B∈LB)< 1
2 and ir′ ,1 (∧D∈MD)<

1
2 , i.e., ϕ

(
L
[
t
′
, t

′′
])

= θ
′′

and ϕ
(
M
[
t
′
, t

′′
])

= θ
′′
.

Since the inequalities

ϕ
(
M
[
t
′
, t

′′
])

= θ
′′
< θ

′ ≤ θ2

= min (θ2, 1)

= min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

and

ϕ
(
L
[
t
′′
, t

′
])

= θ
′′
< θ

′ ≤ θ2

= min (θ2, 1)

= min
(
θ2, ϕ

(
K
[
t
′
, t

′′
]))

hold true, the instance r
′

does not satisfy the depen-
dency K → θ2−→F L. This is a contradiction.

Therefore, ir′ ,1 (K) >
1
2 .

Now, we prove that c
′

is not valid under ir′ ,1.

Suppose that ir′ ,1
(
c
′
)
> 1

2 , where c
′
corresponds

to the dependency X θ1−→F Y . We have,

g−1
(
min

( 1

ir′ ,1 (∧A∈XA)
·

g
(
ir′ ,1 (∧B∈YB)

)
, g (1)

))
>

1

2
,

i.e.,

min
( 1

ir′ ,1 (∧A∈XA)
·

g
(
ir′ ,1 (∧B∈YB)

)
, g (1)

)
> g

(
1

2

)
.

If

min
( 1

ir′ ,1 (∧A∈XA)
·

g
(
ir′ ,1 (∧B∈YB)

)
, g (1)

)
= g (1) ,
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then

1

ir′ ,1 (∧A∈XA)
·

g
(
ir′ ,1 (∧B∈YB)

)
≥ g (1) > g

(
1

2

)
.

Otherwise,

1

ir′ ,1 (∧A∈XA)
·

g
(
ir′ ,1 (∧B∈YB)

)
> g

(
1

2

)
.

In any case, the last inequality holds true.
Assume that g

(
ir′ ,1 (∧B∈YB)

)
6= 0,∞.

If ir′ ,1 (∧A∈XA) = 0, then ϕ
(
X
[
t
′
, t

′′
])

= θ
′′
.

Now,

ϕ
(
Y
[
t
′
, t

′′
])
≥ θ′′ = min

(
θ1, θ

′′
)

= min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

.

This means that r
′

satisfies X θ1−→F Y , i.e., this is
a contradiction.

Therefore, ir′ ,1 (∧A∈XA) > 0, and then

g
(
ir′ ,1 (∧B∈YB)

)
g
(
1
2

) > ir′ ,1 (∧A∈XA) .

If ir′ ,1 (∧A∈XA) ≤
1
2 , then ϕ

(
X
[
t
′
, t

′′
])

= θ
′′
.

Hence,

ϕ
(
Y
[
t
′
, t

′′
])
≥ θ′′ = min

(
θ1, θ

′′
)

= min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

.

This is a contradiction.
We obtain, ir′ ,1 (∧A∈XA) >

1
2 .

The inequality ir′ ,1 (∧A∈XA) >
1
2 and the in-

equality

g
(
ir′ ,1 (∧B∈YB)

)
g
(
1
2

) > ir′ ,1 (∧A∈XA)

yield that

g
(
ir′ ,1 (∧B∈YB)

)
g
(
1
2

) > 1,

i.e., g
(
ir′ ,1 (∧B∈YB)

)
> g

(
1
2

)
, i.e., ir′ ,1 (∧B∈YB)

> 1
2 . Hence, ϕ

(
Y
[
t
′
, t

′′
])

= 1. We obtain,

ϕ
(
Y
[
t
′
, t

′′
])

= 1 ≥ min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

.

This is a contradiction.
We conclude, ir′ ,1

(
c
′
)
≤ 1

2 .

Now, suppose that ir′ ,1
(
c
′
)
> 1

2 , where c
′

corre-

sponds to the dependency X → θ1−→F Y . We have,

g−1
(
min

( 1

ir′ ,1 (∧A∈XA)
·

g
(
max

(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
,

g (1)
))

>
1

2
,

i.e.,

min
( 1

ir′ ,1 (∧A∈XA)
·

g
(
max

(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
,

g (1)
)

> g

(
1

2

)
.

Reasoning as in the case of fuzzy functional de-
pendency X θ1−→F Y , we obtain that

1

ir′ ,1 (∧A∈XA)
·

g
(
max

(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
> g

(
1

2

)
.

Assume that
g
(
max

(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
6= 0,∞.
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If ir′ ,1 (∧A∈XA) = 0, then ϕ
(
X
[
t
′
, t

′′
])

= θ
′′
.

Now,

ϕ
(
Z
[
t
′
, t

′′
])
≥ θ′′ = min

(
θ1, θ

′′
)

= min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

and (or)

ϕ
(
Y
[
t
′′
, t

′
])
≥ θ′′ = min

(
θ1, θ

′′
)

= min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

.

This means that r
′

satisfiesX → θ1−→F Y (namely,
the remaining inequalities required to r

′
satisfies X

→ θ1−→F Y with t
′′′

= t
′

resp. t
′′′

= t
′′

are already
fulfilled). This, however, contradicts the fact that r

′

does not satisfy the dependency X → θ1−→F Y .
Hence, ir′ ,1 (∧A∈XA) > 0. Now,

g
(
max

(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
g
(
1
2

)
> ir′ ,1 (∧A∈XA) .

If ir′ ,1 (∧A∈XA) ≤
1
2 , then ϕ

(
X
[
t
′
, t

′′
])

= θ
′′
.

We obtain,

ϕ
(
Z
[
t
′
, t

′′
])
≥ θ′′ = min

(
θ1, θ

′′
)

= min
(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

.

This is a contradiction.
Hence, ir′ ,1 (∧A∈XA) >

1
2 .

The inequality ir′ ,1 (∧A∈XA) >
1
2 and the in-

equality

g
(
max

(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
g
(
1
2

)
> ir′ ,1 (∧A∈XA)

yield that

g
(
max

(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
g
(
1
2

) > 1,

i.e., g
(
max

(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

))
>

g
(
1
2

)
, i.e., max

(
ir′ ,1 (∧B∈YB) , ir′ ,1 (∧D∈ZD)

)
>

1
2 . Therefore, ir′ ,1 (∧B∈YB) > 1

2 or ir′ ,1 (∧D∈ZD)

> 1
2 , i.e., ϕ

(
Y
[
t
′
, t

′′
])

= 1 or ϕ
(
Z
[
t
′
, t

′′
])

= 1.

If ϕ
(
Y
[
t
′
, t

′′
])

= 1, then

ϕ
(
Y
[
t
′
, t

′′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

i.e., r
′

satisfies X → θ1−→F Y with t
′′′
= t

′′
. This is a

contradiction.
If ϕ

(
Z
[
t
′
, t

′′
])

= 1, then

ϕ
(
Z
[
t
′
, t

′′
])
≥ min

(
θ1, ϕ

(
X
[
t
′
, t

′′
]))

,

i.e., r
′

satisfies X → θ1−→F Y with t
′′′

= t
′
. This is a

contradiction as well.
We conclude, ir′ ,1

(
c
′
)
≤ 1

2 .
This completes the proof.

3 Applications
The results derived in this paper can be applied in the
following way.

First, we recall the inference rules [11].

IR1 Inclusive rule for FFDs: If X θ1−→F Y

holds, and θ1 ≥ θ2, then X θ2−→F Y holds.

IR2 Reflexive rule for FFDs: If X ⊇ Y , then
X →F Y holds.

IR3 Augmentation rule for FFDs: If X θ−→F Y

holds, then XZ θ−→F Y Z holds.

IR4 Transitivity rule for FFDs: If X θ1−→F Y

holds and Y θ2−→F Z holds, then X
min(θ1,θ2)→ F Z

holds.

IR5 Inclusive rule for FMVDs: If X → θ1−→F

Y holds, and θ1 ≥ θ2, then X → θ2−→F Y holds.

IR6 Complementation rule for FMVDs: If
X → θ−→F Y holds, then X → θ−→F U − XY
holds.
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IR7 Augmentation rule for FMVDs: If
X → θ−→F Y holds, and W ⊇ Z, then
WX → θ−→F Y Z holds.

IR8 Transitivity rule for FMVDs: IfX → θ1−→F

Y holds and Y → θ2−→F Z holds, then

X
min(θ1,θ2)→→ F Z − Y holds.

IR9 Replication rule: If X θ−→F Y holds, then
X → θ−→F Y holds.

IR10 Coalescence rule for FFDs and
FMVDs: If X → θ1−→F Y holds, Z ⊆ Y , and
for someW disjoint from Y we haveW θ2−→F Z,

then X
min(θ1,θ2)→ F Z holds.

IR11 Union rule for FFDs: If X θ1−→F Y holds

and X θ2−→F Z holds, then X
min(θ1,θ2)→ F Y Z

holds.

IR12 Pseudotransitivity rule for FFDs: If
X

θ1−→F Y holds and WY
θ2−→F Z holds, then

WX
min(θ1,θ2)→ F Z holds.

IR13 Decomposition rule for FFDs: If X θ−→F

Y holds and Z ⊆ Y , then X θ−→F Z holds.

IR14 Union rule for FMVDs: If X → θ1−→F Y

holds andX → θ2−→F Z holds, thenX
min(θ1,θ2)→→ F

Y Z holds.

IR15 Pseudotransitivity rule for FMVDs: If
X → θ1−→F Y holds and WY → θ2−→F Z holds,

then WX
min(θ1,θ2)→→ F Z −WY holds.

IR16 Decomposition rule for FMVDs: If
X → θ1−→F Y holds and X → θ2−→F Z holds,

then X
min(θ1,θ2)→→ F Y ∩ Z, X

min(θ1,θ2)→→ F Y −
Z, X

min(θ1,θ2)→→ F Z − Y hold.

IR17 Mixed pseudotransitivity rule: If
X → θ1−→F Y holds and XY θ2−→F Z holds, then

X
min(θ1,θ2)→ F Z − Y holds.

Here, FFDs (FMVDs) means fuzzy functional
dependencies (fuzzy multivalued dependencies).

Example 1. Let U = {Qi | i ∈ {1, 2, ..., 7}} be the
universal set of attributes.

(a) If the fuzzy multivalued dependencies:

Q1Q2Q3Q4 →
θ1−→F Q2Q4Q5Q6,

Q1Q2Q3Q4 →
θ2−→F Q3Q4Q6Q7

hold true, then the fuzzy multivalued dependen-
cies:

(i) Q1Q2Q3Q4
min(θ1,θ2)→→ F Q4Q6,

(ii) Q1Q2Q3Q4
min(θ1,θ2)→→ F Q2Q5,

(iii) Q1Q2Q3Q4
min(θ1,θ2)→→ F Q3Q7

hold also true.

(b) If the fuzzy functional and the fuzzy multivalued
dependencies:

Q1Q2Q3Q4 →
θ1−→F Q2Q4Q5Q6,

Q1Q2Q3Q4Q5Q6
θ2−→F Q3Q4Q6Q7

hold true, then the fuzzy functional dependency

Q1Q2Q3Q4
min(θ1,θ2)→ F Q3Q7

holds also true.

Proof. (I) We may apply the inference rules listed
above.
(a) We obtain:

1) Q1Q2Q3Q4 →
θ1−→F Q2Q4Q5Q6 (input)

2) Q1Q2Q3Q4 →
θ2−→F Q3Q4Q6Q7 (input)

3) Q1Q2Q3Q4 →
θ1−→F Q1Q2Q3Q4Q5Q6 (IR7,

1) augment with Q1Q2Q3Q4)

4) Q1Q2Q3Q4Q5Q6 →
θ2−→F

Q2Q3Q4Q5Q6Q7 (IR7, 2) augment with
Q2Q4Q5Q6)

5) Q1Q2Q3Q4
min(θ1,θ2)→→ F Q7 (IR8, 3), 4))

6) Q1Q2Q3Q4
min(θ1,θ2)→→ F Q1Q2Q3Q4Q7 (IR7,

5) augment with Q1Q2Q3Q4)
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7) Q1Q2Q3Q4Q7 →
θ2−→F Q3Q4Q6Q7 (IR7, 2)

augment with Q7)

8) Q1Q2Q3Q4
min(θ1,θ2)→→ F Q6 (IR8, 6), 7))

9) Q1Q2Q3Q4
min(θ1,θ2)→→ F Q4Q6 (IR7, 8) aug-

ment with Q4)

10) Q1Q2Q3Q4
min(θ1,θ2)→→ F Q3Q7 (IR7, 5) aug-

ment with Q3)

11) Q1Q2Q3Q4 →
θ2−→F Q1Q2Q3Q4Q6Q7

(IR7, 2) augment with Q1Q2Q3Q4)

12) Q1Q2Q3Q4Q6Q7 →
θ1−→F

Q2Q3Q4Q5Q6Q7 (IR7, 1) augment with
Q3Q4Q6Q7)

13) Q1Q2Q3Q4
min(θ1,θ2)→→ F Q5 (IR8, 11), 12))

14) Q1Q2Q3Q4
min(θ1,θ2)→→ F Q2Q5 (IR7, 13)

augment with Q2)

Hence, (i) − (iii) hold true.
(b) We obtain:

1) Q1Q2Q3Q4 →
θ1−→F Q2Q4Q5Q6 (input)

2) Q1Q2Q3Q4Q5Q6
θ2−→F Q3Q4Q6Q7 (input)

3) Q1Q2Q3Q4 →
θ1−→F Q7 (IR6, 1))

4) Q1Q2Q3Q4
min(θ1,θ2)→ F Q7 (IR10, 2), 3))

5) Q1Q2Q3Q4
min(θ1,θ2)→ F Q3Q7 (IR3, 4) aug-

ment with Q3)

This completes the proof.

Proof. (II) We may apply Theorem 1 (see also, [5,
Cor. 8]), and the resolution principle.
(a) (i) First, we associate fuzzy formulas to given
fuzzy dependencies following Theorem 1. We obtain:

K1 ≡ (Q1 ∧Q2 ∧Q3 ∧Q4)⇒
((Q2 ∧Q4 ∧Q5 ∧Q6) ∨Q7) ,

K2 ≡ (Q1 ∧Q2 ∧Q3 ∧Q4)⇒
((Q3 ∧Q4 ∧Q6 ∧Q7) ∨Q5) ,

c
′ ≡ (Q1 ∧Q2 ∧Q3 ∧Q4)⇒

((Q4 ∧Q6) ∨ (Q5 ∧Q7)) .

Second, we find their conjunctive normal forms
(we consider ¬c′ following resolution principle). We
have:

K1 ≡ (¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨Q5 ∨Q7)∧
(¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨Q6 ∨Q7) ,

K2 ≡ (¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨Q5 ∨Q6)∧
(¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨Q5 ∨Q7) ,

¬c′ ≡ Q1 ∧Q2 ∧Q3 ∧Q4 ∧ (¬Q4 ∨ ¬Q6)∧
(¬Q5 ∨ ¬Q7) .

Here, conjunctive terms are the following ones:
¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ Q5 ∨ Q7, ¬Q1 ∨ ¬Q2

∨ ¬Q3 ∨ ¬Q4 ∨ Q6 ∨ Q7, ¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨
¬Q4 ∨ Q5 ∨ Q6, Q1, Q2, Q3, Q4, ¬Q4 ∨ ¬Q6, ¬Q5

∨ ¬Q7.
Let G be the set of these terms.
Third, we apply the resolution principle to the el-

ements of the set G. We deduce:

1) ¬Q1∨¬Q2∨¬Q3∨¬Q4∨Q6∨Q7 (input)

2) ¬Q1∨¬Q2∨¬Q3∨¬Q4∨Q5∨Q6 (input)

3) Q1 (input)

4) Q2 (input)

5) Q3 (input)

6) Q4 (input)

7) ¬Q4 ∨ ¬Q6 (input)

8) ¬Q5 ∨ ¬Q7 (input)

9) ¬Q2∨¬Q3∨¬Q4∨Q6∨Q7 (resolvent from
1) and 3))

10) ¬Q3 ∨ ¬Q4 ∨ Q6 ∨ Q7 (resolvent from 9)
and 4))

11) ¬Q4 ∨Q6 ∨Q7 (resolvent from 10) and 5))

12) Q6 ∨Q7 (resolvent from 11) and 6))

13) ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ Q5 ∨ Q6 (resolvent
from 2) and 3))

14) ¬Q3 ∨¬Q4 ∨Q5 ∨Q6 (resolvent from 13)
and 4))

15) ¬Q4 ∨Q5 ∨Q6 (resolvent from 14) and 5))

16) Q5 ∨Q6 (resolvent from 15) and 6))

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Dzenan Gusic

ISSN: 2224-2856 86 Volume 14, 2019



17) ¬Q6 (resolvent from 7) and 6))

18) Q7 (resolvent from 17) and 12))

19) Q5 (resolvent from 16) and 17))

20) ¬Q5 (resolvent from 8) and 18))

Now, a refutation of the negation ¬c′ follows
from 19) and 20). This actually means that the fuzzy
formulas K1, K2 and c

′
hold at the same time. More

precisely, the condition (b) of Theorem 1 is satisfied.
Consequently, our claim follows from the assertion
(a) of Theorem 1 (see also, [5, Cor. 8]).
(a) (ii) In this case, the fuzzy formulas K1 and K2

have the same form as in the previous case. There-
fore, their conjunctive normal forms as well as their
conjunctive terms remain the same. Now,

c
′ ≡ (Q1 ∧Q2 ∧Q3 ∧Q4)⇒

((Q2 ∧Q5) ∨ (Q6 ∧Q7)) .

Hence,

¬c′ ≡ Q1 ∧Q2 ∧Q3 ∧Q4 ∧ (¬Q2 ∨ ¬Q5)∧
(¬Q6 ∨ ¬Q7) .

The elements of the set G are: ¬Q1 ∨ ¬Q2 ∨
¬Q3 ∨ ¬Q4 ∨ Q5 ∨ Q7, ¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4

∨ Q6 ∨ Q7, ¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ Q5 ∨ Q6,
Q1, Q2, Q3, Q4, ¬Q2 ∨ ¬Q5, ¬Q6 ∨ ¬Q7.

We obtain:

1) ¬Q1∨¬Q2∨¬Q3∨¬Q4∨Q5∨Q7 (input)

2) ¬Q1∨¬Q2∨¬Q3∨¬Q4∨Q5∨Q6 (input)

3) Q1 (input)

4) Q2 (input)

5) Q3 (input)

6) Q4 (input)

7) ¬Q2 ∨ ¬Q5 (input)

8) ¬Q6 ∨ ¬Q7 (input)

9) ¬Q2∨¬Q3∨¬Q4∨Q5∨Q7 (resolvent from
1) and 3))

10) ¬Q3 ∨ ¬Q4 ∨ Q5 ∨ Q7 (resolvent from 9)
and 4))

11) ¬Q4 ∨Q5 ∨Q7 (resolvent from 10) and 5))

12) Q5 ∨Q7 (resolvent from 11) and 6))

13) ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ Q5 ∨ Q6 (resolvent
from 2) and 3))

14) ¬Q3 ∨¬Q4 ∨Q5 ∨Q6 (resolvent from 13)
and 4))

15) ¬Q4 ∨Q5 ∨Q6 (resolvent from 14) and 5))

16) Q5 ∨Q6 (resolvent from 15) and 6))

17) ¬Q5 (resolvent from 7) and 4))

18) Q7 (resolvent from 17) and 12))

19) Q6 (resolvent from 16) and 17))

20) ¬Q7 (resolvent from 8) and 19))

A refutation of ¬c′ follows from 18) and 20).
(a) (iii) The proof is similar to the proofs of (i) and
(ii).
(b) We have:

K1 ≡ (Q1 ∧Q2 ∧Q3 ∧Q4)⇒
((Q2 ∧Q4 ∧Q5 ∧Q6) ∨Q7) ,

K2 ≡ (Q1 ∧Q2 ∧Q3 ∧Q4 ∧Q5 ∧Q6)⇒
(Q3 ∧Q4 ∧Q6 ∧Q7) ,

c
′ ≡ (Q1 ∧Q2 ∧Q3 ∧Q4)⇒

(Q3 ∧Q7) .

Now,

K1 ≡ (¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨Q5 ∨Q7)∧
(¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨Q6 ∨Q7) ,

K2 ≡
(
¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ ¬Q5∨
¬Q6 ∨Q7

)
,

¬c′ ≡ Q1 ∧Q2 ∧Q3 ∧Q4 ∧ (¬Q3 ∨ ¬Q7) .

The elements of the set G are: ¬Q1 ∨ ¬Q2 ∨
¬Q3 ∨ ¬Q4 ∨ Q5 ∨ Q7, ¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4

∨ Q6 ∨ Q7, ¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ ¬Q5 ∨
¬Q6 ∨ Q7, Q1, Q2, Q3, Q4, ¬Q3 ∨ ¬Q7.

We deduce:

1) ¬Q1∨¬Q2∨¬Q3∨¬Q4∨Q5∨Q7 (input)

2) ¬Q1∨¬Q2∨¬Q3∨¬Q4∨Q6∨Q7 (input)
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3) ¬Q1∨¬Q2∨¬Q3∨¬Q4∨¬Q5∨¬Q6∨Q7

(input)

4) Q1 (input)

5) Q2 (input)

6) Q3 (input)

7) Q4 (input)

8) ¬Q3 ∨ ¬Q7 (input)

9) ¬Q2∨¬Q3∨¬Q4∨Q5∨Q7 (resolvent from
1) and 4))

10) ¬Q3 ∨ ¬Q4 ∨ Q5 ∨ Q7 (resolvent from 9)
and 5))

11) ¬Q4 ∨Q5 ∨Q7 (resolvent from 10) and 6))

12) Q5 ∨Q7 (resolvent from 11) and 7))

13) ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ Q6 ∨ Q7 (resolvent
from 2) and 4))

14) ¬Q3 ∨¬Q4 ∨Q6 ∨Q7 (resolvent from 13)
and 5))

15) ¬Q4 ∨Q6 ∨Q7 (resolvent from 14) and 6))

16) Q6 ∨Q7 (resolvent from 15) and 7))

17) ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ ¬Q5 ∨ ¬Q6 ∨ Q7

(resolvent from 3) and 4))

18) ¬Q3 ∨ ¬Q4 ∨ ¬Q5 ∨ ¬Q6 ∨Q7 (resolvent
from 17) and 5))

19) ¬Q4∨¬Q5∨¬Q6∨Q7 (resolvent from 18)
and 6))

20) ¬Q5 ∨ ¬Q6 ∨ Q7 (resolvent from 19) and
7))

21) ¬Q7 (resolvent from 8) and 6))

22) Q5 (resolvent from 21) and 12))

23) Q6 (resolvent from 21) and 16))

24) ¬Q6 ∨Q7 (resolvent from 20) and 22))

25) Q7 (resolvent from 24) and 23))

A refutation of ¬c′ follows from 25) and 21).
This completes the proof.

It is worth to note that the authors in [12] first pro-
posed the way of obtaining fuzzy implications from
t-norms. In particular, the first fuzzy implication ob-
tained in this way was the Yager fuzzy implication
IY G.

Questions like: behavior of f-implications with
respect to their distributivity over t-norms and t-co-
norms, the law of importation and contrapositive sym-
metry, algebraic properties of f- and g-generated fuzzy
implications, description of their intersections with
(S,N)-implications and R-implications, description of
certain sub-families of such intersections, characteri-
zation of the intersections of f- and g-generated fuzzy
implications with various families of fuzzy implica-
tions, partial characterization of such intersections, in-
troducing of new classes of fuzzy implications, etc.
are quite well understood in [8], [1] and [3].
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